Таблица: Шкала pH, примеры

Таблица: Шкала pH, примеры

Кислотно-щелочное равновесие.

Показатель pH и его влияние на качество питьевой воды.

Что такое pH?

pH («potentia hydrogeni» — сила водорода, или «pondus hydrogenii» — вес водорода) — это единица измерения активности ионов водорода в любом веществе, количественно выражающая его кислотность.

Данный термин появился в начале ХХ века в Дании. Показатель pH ввел датский химик Сорен Петр Лауриц Соренсен (1868-1939), хотя утверждения о некой «силе воды» встречаются и у его предшественников.

Активность водорода определяется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на литр:

pH = -log[H+]

Для простоты и удобства при вычислениях был введен показатель pH. рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. Принято измерять уровень pH по 14-цифровой шкале.

Если в воде пониженное содержание свободных ионов водорода [H+] (рН больше 7) по сравнению с ионами гидроксида [ОН-], то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН меньше 7) — кислую реакцию. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга.

кислая среда: [H+] > [OH-]
нейтральная среда: [H+] = [OH-]
щелочная среда: [OH-] > [H+]

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. В нейтральной воде показатель рН равен 7.

При растворении в воде различных химических веществ этот баланс изменяется, что приводит к изменению значения рН. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении щелочи — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает.

рН показатель отражает степень кислотности или щелочности среды, в то время как «кислотность» и «щелочность» характеризуют количественное содержание в воде веществ, способных нейтрализовывать соответственно щелочи и кислоты. В качестве аналогии можно привести пример с температурой, которая характеризует степень нагрева вещества, но не количество тепла. Опустив руку в воду, мы можем сказать какая вода — прохладная или теплая, но при этом не сможем определить сколько в ней тепла (т.е. условно говоря, как долго эта вода будет остывать).

pH считается одним из важнейших показателей качества питьевой воды. Он показывает кислотно-щелочное равновесие и влияет на то, как будут протекать химические и биологические процессы. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д. От кислотно-щелочного равновесия среды нашего организма напрямую зависит наше самочувствие, настроение и здоровье.

Современный человек живет в загрязненной окружающей среде. Многие приобретают и употребляют пищу, изготовленную из полуфабрикатов. Кроме этого практически каждый человек ежедневно подвергается стрессовому воздействию. Все это оказывает влияние на кислотно-щелочное равновесие среды организма, смещая его в сторону кислот. Чай, кофе, пиво, газированные напитки снижают показатель pH в организме.

Считается, что кислая среда является одной из основных причин разрушения клеток и повреждения тканей, развития заболеваний и процессов старения, росту болезнетворных организмов. В кислой среде до клеток не доходит строительный материал, разрушается мембрана.

Кислая среда провоцирует множество заболеваний, среди которых сердечно-сосудистые заболевания, артрит, остеопороз, онкологические заболевания и др, а так же способствует развитию бактерий, вирусов, грибков, гельминтов и прочих паразитов. Паразиты предпочитают кислую среду обитания, и именно в кислотной среде они проявляют себя наиболее патогенно. Кислую среду в организме создают психические и физические перегрузки, мясо, пища, прошедшая глубокую термическую и иную технологическую обработку, снижающую содержание в ней полезных веществ. Эти же источники закисления наполняют организм свободными радикалами, которые перегружают иммунную систему. Один из признаков закисления организма — некомфортная сухость во рту.

Внешне о состоянии кислотно-щелочного равновесия крови человека можно судить по цвету его конъюнктивы в уголках глаз. При оптимальном кислотно-щелочном балансе цвет конъюнктивы ярко-розовый, если же у человека повышается щелочность крови, конъюнктива приобретает темно-розовый окрас, а при повышении кислотности окрас конъюнктивы становится бледно-розовым. При чем цвет конъюнктивы изменяется уже через 80 секунд после употребления веществ, влияющих на кислотно-щелочное равновесие.

Организм регулирует рН внутренних жидкостей, поддерживая значения на определенном уровне. Кислотно-щелочной баланс организма — это определенное соотношение кислот и щелочей, способствующее его нормальному функционированию. Кислотно-щелочной баланс зависит от сохранения относительно постоянных пропорций между межклеточными и внутриклеточными водами в тканях организма. Если кислотно-щелочное равновесие жидкостей в организме не будет поддерживаться постоянно, нормальное функционирование и сохранение жизни окажутся невозможными. Поэтому важно контролировать то, что вы потребляете.

Кислотно-щелочной баланс – это наш индикатор здоровья. Чем мы «кислее», тем скорее стареем и больше болеем. Для нормальной работы всех внутренних органов уровень рН в организме должен быть щелочным, в интервале от 7 до 9.

pH внутри нашего тела не всегда одинаков — некоторые его части более щелочные, а некоторые кислотные. Организм регулирует и поддерживает гомеостаз уровня pH лишь в отдельных случаях, например pH крови. На уровень pH почек и других органов, кислотно-щелочное равновесие которых не регулируются организмом, влияют пища и напитки, которые мы употребляем.

pH крови

Уровень pH крови поддерживается организмом в диапазоне 7.35-7.45. Нормальным показателем pH крови человека считается 7,4-7,45. Даже незначительное отклонение этого показателя влияет на способность крови переносить кислород. Если pH крови повышается до 7,5, она переносит на 75% кислорода больше. При снижении показателя pH крови до 7,3 человеку уже сложно подняться с постели. При 7,29 он может впасть в кому, если показатель pH крови снизится ниже 7,1 — человек умирает.

Уровень pH крови должен поддерживаться в здоровом диапазоне, поэтому организм использует органы и ткани для поддержания его постоянства. Вследствие этого, уровень pH крови не меняется из-за употребления щелочной или кислотной воды, но ткани и органы тела, используемые для регулировки pH крови, меняют свой pH.

pH почек

На параметр pH почек оказывает влияние вода, пища, метаболические процессы в организме. Кислотная еда (например мясные продукты, молочные продукты и др.) и напитки (сладкие газированные напитки, алкогольные напитки, кофе и пр.) приводят к низкому уровню pH в почках, потому что организм выводит излишнюю кислотность через мочу. Чем ниже уровень pH мочи, тем тяжелее приходится работать почкам. Поэтому кислотная нагрузка, приходящаяся от такой еды и напитков на почки, называется потенциальной кислотно-почечной нагрузкой.

Употребление щелочной воды приносит почкам пользу — происходит повышение уровня pH мочи, снижается кислотная нагрузка на организм. Увеличение pH мочи повышает pH организма в целом и избавляет почки от кислотных токсинов.

pH желудка

В пустом желудке содержится не больше чайной ложки желудочной кислоты, выработанной в последний прием пищи. Желудок производит кислоту по мере необходимости при употреблении пищи. Желудок не выделяет кислоту, когда человек пьет воду.

Очень полезно — пить воду на пустой желудок. Показатель pH увеличивается при этом до уровня 5-6. Увеличенный pH будет иметь мягкий антацидный эффект и приведет к увеличению количества полезных пробиотиков (благотворных бактерий). Увеличение pH желудка повышает pH организма, что ведет к здоровому пищеварению и освобождает от симптомов расстройства желудка.

pH подкожного жира

Жировые ткани организма имеют кислотный pH, поскольку в них откладываются излишние кислоты. Организму приходится хранить кислоту в жировых тканях, когда она не может быть выведена или нейтрализована иными способами. Поэтому смещение pH организма в кислую сторону — это один из факторов лишнего веса.

Позитивное влияние щелочной воды на массу тела состоит в том, что щелочная вода помогает выводить из тканей излишнюю кислоту, поскольку помогает почкам работать более рационально. Это помогает контролировать вес, поскольку многократно снижается количество кислоты, которое тело должно «хранить». Щелочная вода также улучшает результаты здоровой диеты и упражнений, помогая организму справиться с излишней кислотностью, выделяемой жировыми тканями в процессе потери веса.

Кости

У костей щелочной pH, так как они в основном состоят из кальция. Их pH постоянен, но если кровь нуждается в регулировке pH, кальций забирается из костей.

Польза, приносимая щелочной водой костям, состоит в их защите, путем снижения количества кислоты, с которым организму приходится бороться. Исследования показали, что употребление щелочной воды снижает рассасывание костей — остеопороз.

pH печени

У печени слабощелочной pH, на уровень которого влияет и пища, и напитки. Сахар и алкоголь должны быть расщеплены в печени, а это приводит к излишкам кислоты.

Польза, приносимая щелочной водой печени, состоит в наличии в такой воде антиоксидантов; установлено, что щелочная вода усиливает работу двух антиоксидантов, находящихся в печени, способствующих более эффективному очищению крови.

pH организма и щелочная вода

Щелочная вода позволяет частям тела, сохраняющим pH крови, работать с большей производительностью. Повышение уровня pH в частях тела, отвечающих за поддержание pH крови, поможет этим органам оставаться здоровыми и работать оперативно.

Между приемами пищи Вы можете помочь Вашему организму нормализовать показатель pH, употребляя щелочную воду. Даже небольшое увеличение pH может оказать огромное влияние на состояние здоровья.

По данным исследований японских ученых, показатель pH питьевой воды, находящийся в диапазоне 7-8, повышает продолжительность жизни населения на 20-30%.

В зависимости от уровня рН воды можно условно разделить на несколько групп:

• сильнокислые воды 9.5

Обычно уровень рН питьевой водопроводной воды находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. В речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3.

ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.

Примеры значений pH

Вещество

pH

Электролит в свинцовых аккумуляторах

Интересно знать: Немецкий биохимик ОТТО ВАРБУРГ, удостоенный в 1931 Нобелевской премии по физиологии и медицине доказал, что недостаток кислорода (кислая среда pH

Для сохранения и поддержания здоровья нам необходима правильная щелочная вода (рН=7.5 и выше). Это позволит лучше сохранять кислотно-щелочное равновесие жидкостей организма, так как основные жизненные среды имеют слабощелочную реакцию.

Уже при нейтральной биологической среде организм может обладать удивительной способностью к самоисцелению.

Не знаете где можно взять правильную воду ? Я подскажу!

Нажатие на кнопку « Узнать » не ведет к каким-либо финансовым тратам и обязательствам.

Вы лишь получите информацию о доступности правильной воды в Вашем регионе ,

а так же получите уникальную возможность бесплатно стать членом клуба здоровых людей

и получить скидку 20% на все предложения + накопительный бонус.

Вступи в международный клуб здоровья Coral Club, получи БЕСПЛАТНО дисконтную карту, возможность участия в акциях, накопительный бонус и другие привилегии!

Водородный показатель кислотности (рН)

Водородный показатель, pH (лат. pondus Hydrogenii — «вес водорода», произносится «пэ аш») — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

.

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X, а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH.

.

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора, pOH, которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

.

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 – 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH= −1.

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 1014 , то ясно, что при такой температуре pH + pOH = 14.

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH 7, pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH − ); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH-метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1–2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор, который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH-метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН, что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный методкислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. Влияние температуры на значения pH:

0,001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H + ) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Водородный показатель pH. Таблицы показателей pH.

Что такое pH . Водородный показатель. Кислые и основные (щелочные) свойства растворов / сред.

pH = -log [H + ], или еще строже говоря pH = -log [H3O + ] (химики утверждают, что именно в таком виде положительный ион водорода живет в водном растворе). pH показывает кислотно / щелочной балласнс раствора, а не кислотность или щелочность (основность) отдельно.

pH измеряется в степенях числа 10. Концентрация ионов водорода в растворесс pH 1.0 в 10 раз выше, чем концентрация ионов водорода в растворе с pH 2.0. Чем выше концентрация ионов водорода, тем ниже pH

  • при pH >7 раствор щелочной (основной)
  • при pH — обе равны 10 -7 моль/л.

Что такое pH . Водородный показатель. Кислые и основные (щелочные) свойства растворов / сред.

pHКонцентрация ионов моль/лТип раствора / какие ионы
01.0Кислотный раствор (кислый)

/
Ионы водорода
H +

10.1
20.01
30.001
40.0001
50.00001
60.000001
70.0000001Нейтральный раствор
80.000001Основной (щелочной) раствор /
гидроксильные ионы
OH —
90.00001
100.0001
110.001
120.01
130.1
141.0

В целом химическая теория — сложнее, но pH отличный практический показатель «кислотности» ,» щелочности» и «нейтральности».

Изменение окраски кислотно-основных индикаторов в зависимости от pH раствора. Лакмус, фенолфтолеин, метилоранж.

красныйфиолетовыйсинийбесцветныйбесцветныймалиновыйрозовыйоранжевыйжелтый

* [ x ] — концентрация ионов ‘x’

Таблица pH бытовых веществ, материалов и продуктов.

Таблица pH бытовых веществ, материалов и продуктов.

ВеществоpH
Электролит в свинцовых аккумуляторах
Водородный показатель (pH) некоторых распространенных продуктов питания.

Абрикосовый нектар3.8Малина3.2 — 3.6
Абрикосы3.3 — 4.8Мамалыга6.8 — 8.0
Авокадо6.3 — 6.6Манго5.8 — 6.0
Алое Вера6.1Маслины6.0 — 7.0
Апельсины3.0 — 4.0Масло6.1 — 6.4
Арахисовое масло6.3Меласса (черная патока)4.9 — 5.4
Арбуз5.2 — 5.6Молоко6.4 — 6.8
Артишоки5.5 — 6.0Морковь5.9 — 6.3
Бананы4.5 — 5.2Морское ушко6.1 — 6.5
Батат (сладкий картофель)5.3 — 5.6Мука пшеничная5.5 — 6.5
Батат (сладкий
картофель), вареный.
5.5 — 6.8Мякоть томата4.3 — 4.5
Белый хлеб5.0 — 6.2Нектарины3.9 — 4.2
Бобы5.6 — 6.5Овощной сок3.9 — 4.3
Брокколи5.3Окунь, морской, жаренный6.6 — 6.8
Вино2.8 — 3.8Оливки3.6 — 3.6
Виноград3.5 — 4.5Пахта4.4 — 4.8
Вишня3.2 — 4.5Персики3.4 — 4.1
Газированные напитки2.0 — 4.0Печень трески6.2
Горох5.8 — 6.4Пиво4.0 — 5.0
Горчица3.5 — 6.0Питьевая вода6.5 — 8.0
Грейпфрут3.0 — 3.7Помидоры4.3 — 4.9
Груши3.6 — 4.0Ревень3.1 — 3.2
Дыня6.0 — 6.7Сардины5.7 — 6.6
Ежевика3.9 — 4.5Свежие яйца7.6 — 8.0
Изюм2.8 — 3.0Свекла4.9 — 6.6
Кактус4.7Сельдерей5.7 — 6.0
Кальмары5.8Сельдь6.1
Каперсы6.0Сидр2.9 — 3.3
Капуста5.2 — 5.4Соевое молоко7.0
Каракатица6.3Соевый соус4.4 — 5.4
Карп6.0Соус Карри6.0
Картофель5.6 — 6.0Соус Чили2.8 — 3.7
Кетчуп3.9Спаржа6.0 — 6.7
Кислая капуста3.4 — 3.6Сыр4.8 — 6.4
Кленовый сироп4.6 — 5.5Томатный сок4.1 — 4.6
Клубника, земляника3.0 — 3.9Тунец5.9 -6.1
Клубничный (земляничный) джем3.0 — 3.4Турнепс (репа)5.2 — 5.6
Клюквенный сок2.3 — 2.5Тыква4.8 — 5.2
Кокос5.5 — 7.8Уксус2.4 — 3.4
Кокосовое молоко6.1 — 7.0Уксус яблочный3.1
Крабовое мясо6.5 — 7.0Устрицы5.7 — 6.2
Красный перец4.6 — 5.2Финики6.5 — 8.5
Креветки6.8 — 7.0Фруктовое желе2.8 — 3.4
Крекеры6.5 — 8.5Фруктовый джем3.5 — 4.0
Крыжовник2.8 — 3.1Фруктовый коктейль3.6 — 4.0
Кукуруза5.9 — 7.3Херес3.4
Курага( сушеные абрикосы)3.4 — 3.8Хрен5.4
Лайм1.8 — 2.0Чай7.2
Лаймовый сок2.0 — 2.4Черника3.1 — 3.4
Лимоны2.2 — 2.4Шпинат5.5 — 6.8
Лимонный сок2.0 — 2.6Яблоки3.3 — 3.9
Лосось6.1 — 6.3
Лук-порей5.5 — 6.2

Таблица. Значения pH оснований, щелочей (растворы)

Значения pH для некоторых распространенных оснований и щелочей приведены в таблице ниже.

Таблица. Значения pH оснований, щелочей (растворы)

Аммиак /Ammoniaн.11.5
Аммиак /Ammonia0.1 н.11.1
Аммиак /Ammonia0.01 н.10.6
Ацетат натрия / Sodium acetate0.1 н.8.9
Барбитал — натрий / Barbital sodium0.1 н.9.4
Бензойнокислый натрий /Sodium benzoate0.1 н.8.0
Бикарбонат калия / Potassium bicarbonate0.1 н.8.2
Бикарбонат натрия /Sodium bicarbonate0.1 н.8.4
Гидроокись железа /Ferrous hydroxideнасыщенный9.5
Гидроокись калия / Potassium hydroxideн.14.0
Гидроокись калия / Potassium hydroxide0.1 н.13.0
Гидроокись калия / Potassium hydroxide0.01 н.12.0
Гидроокись кальция /Calcium hydroxideнасыщенный12.4
Гидроокись натрия / Sodium hydroxideн.14.0
Гидроокись натрия / Sodium hydroxide0.1 н.13.0
Гидроокись натрия / Sodium hydroxide0.01 н.12.0
Карбонат кальция / Calcium carbonateнасыщенный9.4
Метасиликат натрия / Sodium metasilicate0.1 н.12.6
Оксид магнияия / Magnesiaнасыщенный10.5
Пироборнокислый натрий (Бура)/ Borax0.01 н.9.2
Сесвикарбонат натрия / Sodium sesquicarbonate0.1 н.10.1
Тринатрийфосфат / Trisodium phosphate0.1 н.12.0
Углекислый калий / Potassium carbonate0.1 н.11.5
Углекислый натрий / Sodium carbonate0.1 н.11.6
Уксуснокислый калий / Potassium acetate0.1 н.9.7
Цианид калия / Potassium cyanide0.1 н.11.0

Таблица значений PH кислот. (Растворов).

В таблице представлены серная, уксусная и другие распространенные кислоты.
pH- это мера активности ионов водорода в растворах, и, таким образом, их кислотности или щелочности. Таким образом, в таблице ниже указана кислотность некоторых обычных кислот.

Таблица значений PH кислот. (Растворов).

Азотная / Nitric0.1н.1.0
Алюминиевые квасцы / Alum0.1 н.3.2
Бензойная / Benzoic0.1 н.3.0
Борная / Boric0.1 н.5.2
Винная / Tartaric0.1 н.2.2
Желудочный сок / Stomach Acid1
Лимонная / Citric0.1н.2.2
Лимонный сок / Lemon Juice2
Молочная / Lactic0.1 н.2.4
Муравьиная / Formic0.1 н.2.3
Мышьяковистая / Arseniousнасыщенный5.0
Оксиянтарная (яблочная) / Malic0.1 н.2.2
Ортофосфорная / Orthophosphoric0.1 н.1.5
Салициловая / Salicylicнасыщенный2.4
Серная / Sulfuricн.0.3
Серная / Sulfuric0.1 н.1.2
Серная / Sulfuric0.01 н.2.1
Сернистая / Sulfurous0.1 н.1.5
Сероводородная / Hydrogen sulfide0.1 н.4.1
Трихлороуксусная / Trichloracetic0.1 н.1.2
Угольная (Углеродная) / Carbonicнасыщенный3.8
Уксус столовый (3-15%) / Vinegar3
Уксусная / Acetic2.4
Уксусная / Acetic0.1 н.2.9
Уксусная / Acetic0.01 н.3.4
Хлористоводородная / Hydrochloricн.0.1
Хлористоводородная / Hydrochloric0.1 н.1.1
Хлористоводородная / Hydrochloric0.01 н.2.0
Цианистоводородная (синильная) / Hydrocyanic0.1 н.5.1
Щавелевая / Oxalic0.1 н.1.3
Янтарная / Succinic0.1н.2.7

Возможно, вам это будет интересно:

Постоянная ссылка на это сообщение: http://meandr.org/archives/24330

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Кислотность (рН)

Кислотность (лат. aciditas) — характеристика активности ионов водорода в растворах и жидкостях.

В медицине кислотность биологических жидкостей (крови, мочи, желудочного сока и других) является диагностически важным параметром состояния здоровья пациента. В гастроэнтерологии, для правильного диагностирования целого ряда заболеваний, например, пищевода и желудка, одномоментная или даже средняя величина кислотности не является значимой. Чаще всего важно понимание динамики изменения кислотности в течение суток (ночная кислотность нередко отличается от дневной) в нескольких зонах органа. Иногда важно знать изменение кислотности, как реакцию на определенные раздражители и стимуляторы.

Содержание
Водородный показатель pH

Исходя из того, что в нейтральной среде аН = а и из выполнения равенства для чистой воды при 22 °С: аН × а = Кw = 10 − 14 , получаем, что кислотность чистой воды при 22 °С (то есть нейтральная кислотность) = 7 ед. pH.

Растворы и жидкости в отношении их кислотности считаются:

  • нейтральными при рН = 7
  • кислыми при pH 7
Некоторые заблуждения

Если кто-то из пациентов говорит, что у него «нулевая кислотность», то это не более, чем оборот речи, означающий, скорее всего, что у него нейтральное значение кислотности (рН=7). В организме человека величина показателя кислотности не может быть меньше 0,86 рН. Также распространено заблуждение, что величины кислотности могут быть только в диапазоне от 0 до 14 pH. В технике возможен показатель кислотность и отрицательный, и больше 20.

Когда говорят о кислотности кого-либо органа, важно при этом понимать, что часто в различных частях органа кислотность может значительно отличаться. Кислотность содержимого в просвете органа и кислотность на поверхности слизистой оболочки органа также часто бывает не одинаковой. Для слизистой оболочки тела желудка характерно, что кислотность на поверхности слизи, обращенной в просвет желудка кислотность 1,2–1,5 рН, а на стороне слизи, обращённой к эпителию — нейтральная (7,0 рН).

Величина рН для некоторых продуктов и воды

В таблице ниже указаны величины кислотности некоторых распространенных продуктов и чистой воды при разной температуре:

ПродуктКислотность, ед. рН
Лимонный сок2,1
Вино3,5
Томатный сок4,1
Апельсиновый сок4,2
Черный кофе5,0
Чистая вода при 100 °С6,13
Чистая вода при 50 °С6,63
Свежее молоко6,68
Чистая вода при 22 °С7,0
Чистая вода при 0° С7,48
Кислотность и пищеварительные ферменты

Очень многие процессы в организме невозможны без участия специальных белков – ферментов, которые катализируют химические реакции в организме, не подвергаясь при этом химическим превращениям. Пищеварительный процесс не возможен без участия разнообразных пищеварительных ферментов, расщепляющих разные органические молекулы пищи и действующих только в узком диапазоне кислотности (своем для каждого фермента). Важнейшие протеолитические ферменты (расщепляющие белки пищи) желудочного сока: пепсин, гастриксин и химозин (реннин) продуцируются в неактивной форме – в виде проферментов и позже активируется соляной кислотой желудочного сока. Пепсин наиболее активен в сильнокислой среде, с pH от 1 до 2, гастриксин имеет максимум активности при рН 3,0–3,5, химозин, расщепляющий белки молока до нерастворимого белка казеина, имеет максимум активности при рН 3,0–3,5.

Протеолитический ферменты, выделяемые поджелудочной железой и “действующие” в двенадцатиперстной кишке: трипсин имеющий оптимум действия в слабощелочной среде, при pH 7,8–8,0, близкий к нему по функциональности химотрипсин наиболее активен в среде с кислотностью до 8,2. Максимум активности карбоксипептидаз А и В 7,5 рН. Близкие значения максимальной и у других ферментов, выполняющих пищеварительные функции в слабощелочной среде кишечника.

Пониженная или повышенная кислотность по отношению к норме в желудке или двенадцатиперстной кишке, таким образом, приводит к существенному снижению активности тех или ферментов или даже их исключению из пищеварительного процесса, и, как следствие к проблемам с пищеварением.

Кислотность слюны и полости рта

Кислотность слюны зависит от скорости слюноотделения. Обычно кислотность смешанной слюны человека равна 6,8–7,4 pH, но при большой скорости слюноотделения достигает 7,8 pH. Кислотность слюны околоушных желёз равна 5,81 pH, подчелюстных — 6,39 pH.

У детей в среднем кислотность смешанной слюны равна 7,32 pH, у взрослых — 6,40 pH (Римарчук Г.В. и др.).

Кислые гастроэзофагеальные и фаринголарингеальные рефлюксы, достигающие полости рта, играют ведущую роль в возникновении патологии полости рта. В результате попадания соляной кислоты происходит снижение кислотности смешанной слюны ниже 7,0 рН. Слюна, в норме обогащенная кальцием, фосфатами, содержащая карбонаты, натрий, калий, магний и обладающая щелочными свойствами, при низком рН, особенно при значениях 6,2–6,0, приводит к очаговой деминерализации эмали зубов с появлением эрозий твердых тканей зубов и образованием в них полостей — кариеса (Новикова В.П., Шабанов A.M.).

Кислотность зубного налета зависит от состояния твердых тканей зубов. Будучи нейтральной у здоровых зубов, она смещается в кислую сторону, в зависимости от степени развития кариеса и возраста подростков. У 12-летних подростков с начальной стадией кариеса (предкариесом) кислотность зубного налета равна 6,96 ± 0,1 pH, у 12–13-летних подростков со среднем кариесом кислотность зубного налета от 6,63 до 6,74 pH, у 16-летних подростков при поверхностном и среднем кариесе кислотность зубного налета равна, соответственно, 6,43 ± 0,1 pH и 6,32 ± 0,1 pH (Кривоногова Л.Б.).

Кислотность секрета глотки и гортани

Кислотность секрета глотки и гортани у здоровых и больных хроническим ларингитом и фаринголарингеальным рефлюксом различна (А.В. Лунев):

Таблица: Шкала pH, примеры

Несколько меньшее распространение получила обратная pH величина — показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH − :

как в любом водном растворе при 22 °C , очевидно, что при этой температуре:

Значения pH в растворах различной кислотности

  • Вопреки распространённому мнению, pH может изменяться не только в интервале от 0 до 14, а может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль /л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1.
Некоторые значения pH

ВеществоpH
Электролит в свинцовых аккумуляторах13

Так как при 25 °C (стандартных условиях)[H + ] · [OH − ] = 10 −14 , то понятно, что при этой температуре pH + pOH = 14.

Так как в кислых растворах [H + ] > 10 −7 , то у кислых растворов pH 7, pH нейтральных растворов равен 7. При более высоких температурах константа электролитической диссоциации воды повышается, соответственно увеличивается ионное произведение воды, поэтому нейтральной оказывается pH + , так и OH − ); при понижении температуры, напротив, нейтральная pH возрастает.

Методы определения значения pH

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

  1. Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1—2 единицы.
  2. Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.
  3. Использование специального прибора — pH-метра — позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, включающей специальный стеклянный электрод, потенциал которого зависит от концентрации ионов H + в окружающем растворе. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне рН, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.
  4. Аналитический объёмный метод — кислотно-основное титрование — также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакции. Точка эквивалентности — момент, когда титранта точно хватает, чтобы полностью завершить реакцию, — фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.
  5. Влияние температуры на значения pH

0.001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3

0.001 моль/Л NaOH при 20 °C имеет pH=11.73, при 30 °C pH=10.83

Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H + ) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред.

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем организма.

См. также

Комментарии

Об источнике

В предисловии к первому русскому изданию книги Роджера Бейтса [1] , предпринятому по второму её изданию — «Определение pH» [2] , которое существенно отличается от первого — «Электрометрическое определение pH» [3] , редакторами перевода сказано:

В переводе по сравнению с оригиналом внесены некоторые исправления, сделанные автором для русского издания, и выпущено описание приборов, производимых американскими фирмами.

Кроме того, мы сочли полезным сделать два добавления, помещённые после X главы. Первое дополнение — о современном состоянии теории стеклянного электрода — написано Б. П. Никольским, М. М. Шульцем и А. А. Белюстиным, и второе — о разработке, исследовании и применении стеклянных электродов с металлическими функциями — М. М. Шульцем и А. А. Белюстиным. В этих дополнениях изложены результаты последних работ советских авторов в области теории стеклянного электрода и, в частности, описываются стеклянные электроды с металлическими функциями, пригодные для определения концентрации (активности) ионов натрия, калия, лития и др.

В книге дается очень краткое изложение вопроса об абсолютных потенциалах электродов. Мы считали необходимым отослать читателя к классическим работам школы А. Н. Фрумкина, в которых наиболее исчерпывающим образом разработана эта проблема.

. Некоторые трудности представлял перевод терминов. Так, например, выражения: «operational pH scale» (англ. операционная шкала pH ), «operational definition of the measured pH» (англ. рабочее определение величины pH ) мы перевели: «инструментальная шкала pH» и «инструментальное определение величины pH», поскольку термин «инструментальный» в этом смысле уже получил распространение среди русских специалистов по pH-метрии.

Книга Р. Бейтса отличается от других книг по pH-метрии, имеющихся на русском языке, рядом достоинств. . В ней с большой полнотой, на высоком теоретическом уровне и с достаточной термодинамической строгостью рассмотрены сложные проблемы pH-метрии и показано, в какой мере экспериментально определяемая величина pH может интерпретироваться с точки зрения концентрации или активности ионов водорода. Хорошо изложены принципы и теоретические основы экспериментального определения pH. Очень ценным является довольно подробное изложение проблем и практики определения pH индикаторными методами.

В 1965 году Роджер Бейтс пишет проф. Б. П. Никольскому и проф. М. М. Шульцу:

Глубокоуважаемые профессора Никольский и Шульц!

Занимаясь стандартизацией измерений pH, я смог по достоинству оценить ваши превосходные работы по стеклянному электроду, которые значительно расширили понимание механизма действия иона водорода. Я надеюсь в скором времени получить возможность побывать в вашей стране в связи с Московским конгрессом Международного союза общей и прикладной химии. Я был бы очень признателен вам, если бы смог посетить ваш институт и познакомиться с вами. Предполагая, что сессия конгресса закончится 18 июля, я надеюсь быть в Ленинграде 19 июля. Возможно ли моё посещение Вашего института 20 или 21 июля? Я хорошо знаком также с некоторыми работами доктора Л. Л. Макарова и, если это удобно, хотел бы встретиться и с ним.

С наилучшими пожеланиями искренне Ваш Роджер Г.Бейтс, руководитель отдела электрохимического анализа Национального бюро стандартов. [4]

Водородный показатель кислотности (рН)

Водородный показатель, pH (лат. pondus Hydrogenii — «вес водорода», произносится «пэ аш») — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

.

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X, а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH.

.

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора, pOH, которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

.

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 – 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH= −1.

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 1014 , то ясно, что при такой температуре pH + pOH = 14.

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH 7, pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH − ); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH-метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1–2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор, который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH-метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН, что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный методкислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. Влияние температуры на значения pH:

0,001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H + ) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Ссылка на основную публикацию