- Алименты

Правильная четырехугольная призма

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Правильная четырехугольная призма». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.


Равные грани-многоугольники призмы лежат в параллельных плоскостях и называются основаниями призмы, а остальные грани-параллелограммы — боковыми гранями. Ребра боковых граней, не принадлежащие основаниям, называют боковыми ребрами. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю призмы (рис. 1). Плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани, называется диагональной плоскостью, а сечение призмы диагональной плоскостью — диагональным сечением. На рисунке 2 показаны два диагональных сечения призмы.

Площадь боковой поверхности правильной треугольной призмы, онлайн расчет

Найти площадь боковой поверхности правильной треугольной призмы. Площадь боковой поверхности правильной треугольной призмы, онлайн расчет

Площадь боковой поверхности правильной шестиугольной призмы, онлайн расчет

Найти площадь боковой поверхности правильной шестиугольной призмы. Площадь боковой поверхности правильной шестиугольной призмы, онлайн расчет

Призма представляет собой две конгруэнтные n-угольные грани, лежащие в параллельных плоскостях и n-количество граней-параллелограммов, которые расположены на сторонах n-угольника. Простыми словами, если в основании призмы лежит квадрат, то фигура превращается в куб. Если пентагон, то в пятиугольную призму, если гексагон — в шестиугольную. Если же количество сторон многоугольника, лежащего в основании, стремится к бесконечности, то фундамент призмы превращается в круг, а сама фигура трансформируется в цилиндр. Таким образом, призма — это частный случай некругового цилиндра.

Призмы имеют большое распространение в реальной жизни. В отличие от конусов или тетраэдров, призматическую форму имеет огромное количество предметов, вещей или деталей. К примеру, кирпич — это призма, кирпичное помещение с параллельными стенами — тоже призма, любое здание, состоящее из этих помещений — призматическая фигура. И даже мебель в этих зданиях имеет геометрию призмы. Наш мир состоит из разных призм, поэтому формула определения поверхности фигуры может вам понадобиться во многих жизненных ситуациях.

Площадь поверхности призмы

Площадь правильной призматической фигуры — это сумма всех площадей боковых поверхностей, а также нижнего и верхнего оснований. Площадь боковой поверхности находится как сумма площадей параллелограммов:

где n — количество граней, a — сторона параллелограмма, а h — его высота.

Площадь оснований вычисляется по формулам расчета площадей соответствующих многоугольников. К примеру, если в основании призмы лежит равносторонний треугольник, то

а если правильный шестиугольник, то

Так как призма имеет два одинаковых основания, то формула общей площади поверхности фигуры принимает вид:

Если вам необходимо найти площадь поверхности правильной призматической фигуры, то воспользуйтесь нашим онлайн-калькулятором. Для вычисления вам понадобится ввести три переменных:

Рассмотрим примеры использования данной формулы в реальной жизни.

Площадь основания призмы правильной

Пожалуй, самой простой задачей при работе с призмами является проблема нахождения площади основания правильной фигуры. Поскольку оно образовано n-угольником, у которого все углы и длины сторон являются одинаковыми, то всегда можно разделить его на одинаковые треугольники, у которых известны углы и стороны. Суммарная площадь треугольников будет площадью n-угольника.

Еще один способ определить часть площади поверхности призмы (основание) заключается в использовании известной формулы. Она имеет следующий вид:

S n = n/4*a 2 *ctg(pi/n)

То есть площадь S n n-угольника однозначно определяется исходя из знания длины его стороны a. Некоторую сложность при расчете по формуле может составить вычисление котангенса, особенно когда n>4 (для n≤4 значения котангенса — это табличные данные). Для определения этой тригонометрической функции рекомендуется воспользоваться калькулятором.

При постановке геометрической задачи следует быть внимательным, поскольку может потребоваться найти площадь оснований призмы. Тогда полученное по формуле значение следует умножить на два.

Читайте также:  Оформление дарственной на квартиру у нотариуса

Когда давалось геометрическое определение рассматриваемой фигуры, было показано, что она состоит из двух оснований и некоторого числа параллелограммов. Это число в точности равно количеству сторон многоугольника в основании. Площадь поверхности рассматриваемой фигуры принято записывать следующей формулой:

S = 2*So + Sb

Где So – основания площадь, Sb – боковой поверхности. Поскольку последняя состоит из n параллелограммов, то ее величина равна сумме их площадей.

В случае правильной прямой призмы боковая поверхность будет образована прямоугольниками со сторонами a и h, где a – длина стороны основания, h – высота призмы. Для случая n правильного угольника, получаем формулу для площади Stot призмы:

Stot = n/2*a2*ctg(pi/n) + n*a*h

Ниже приведен рисунок, демонстрирующий развертку шестиугольной призмы.

Задача с правильной фигурой

Рассмотрев вопрос нахождения объема призмы четырехугольной с точки зрения теории, применим полученные знания на практике.

Известно, что правильный параллелепипед имеет длину диагонали основания, равную 12 см. Длина диагонали его боковой стороны составляет 20 см. Необходимо рассчитать объем параллелепипеда.

Обозначим диагональ основания символом da, а диагональ боковой грани — символом db. Для диагонали da справедливы выражения:

Что касается величины db, то она является диагональю прямоугольника со сторонами a и b. Для нее можно записать следующие равенства:

db2 = a2 + b2 =>

b = √(db2 — a2)

Подставляя в последнее равенство найденное выражение для a, получим:

b = √(db2 — da2/2)

Теперь можно подставить полученные формулы в выражение для объема правильной фигуры:

V = a2*b = da2/2*√(db2 — da2/2)

Заменив da и db числами из условия задачи, приходим к ответу: V ≈ 1304 см3.

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Призма является геометрической объемной фигурой, характеристики и свойства которой изучают в старших классах школ. Как правило, при ее изучении рассматривают такие величины, как объем и площадь поверхности. В данной же статье раскроем несколько иной вопрос: приведем методику определения длины диагоналей призмы на примере четырехугольной фигуры.

Призмой является любой многогранник, боковые стороны которого имеют вид параллелограмма. При этом в ее основании может оказаться любой многогранник — от треугольника до n-угольника. Причем основания призмы всегда равны друг другу. Что не относится к боковым граням — они могут существенно различаться по размерам.

При решении задач встречается не только площадь основания призмы. Может потребоваться знание боковой поверхности, то есть всех граней, которые не являются основаниями. Полной поверхностью уже будет объединение всех граней, которые составляют призму.

Иногда в задачах фигурирует высота. Она является перпендикуляром к основаниям. Диагональю многогранника является отрезок, который соединяет попарно две любые вершины, не принадлежащие одной грани.

Следует отметить, что площадь основания прямой призмы или наклонной не зависит от угла между ними и боковыми гранями. Если у них одинаковые фигуры в верхней и нижней гранях, то их площади будут равными.

В его основании фигура с тремя вершинами, то есть треугольник. Он известен тем, что отличается. Если треугольник прямоугольный, то достаточно помнить, что его площадь определяется половиной произведения ножек.

Математическая запись выглядит так: S = ½ ср.

Для определения площади основания треугольной призмы в общем виде пригодятся формулы: Цапля и та, у которой половина стороны поднята на начерченную на ней высоту.

Первую формулу нужно записать так: S = √ (p (pa) (pc) (pc)). В этой записи есть полупериметр (p), то есть сумма трех сторон, разделенная на два.

Во-вторых: S = ½ на * a.

Если вы хотите узнать площадь основания треугольной призмы, которая является правильной, треугольник получается равносторонним. Для этого есть формула: S = ¼ a2 * √3.

Читайте также:  Ответственность за неуплату алиментов

Указания к решению задач

При решении задач на тему «правильная четырехугольная призма » подразумевается, что:

Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия — призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Если боковые ребра призмы находятся под некоторым углом к основанию, то призма является наклонной (Рис.2.1).

Используя правила параллельного проектирования, изображение призмы можно построить следующим образом. Сначала строится одно из оснований, т.е. многоугольник, а затем проводят боковые ребра из каждой вершины основания, которые параллельны и равны между собой. Затем концы этих отрезков соединяются и строится другое основание призмы.

Для того, чтобы построить сечение призмы плоскостью, сначала задают прямую g в плоскости одного из оснований, которая называется следом. Затем проводят через заданную точку В прямую, которая находится в плоскости грани, и соединяют ее с заданным следом в точке Е. Отрезок АС на рассматриваемой грани есть пересечение этой грани с секущей плоскостью.

Если грань, которая содержит точку В, параллельна следу, то секущая плоскость пересекает эту грань по отрезку, параллельному заданному следу и проходящему через точку В.

Читайте также:  Нарушения равновесия и координации движений

Таким образом, можно провести отрезки на всех гранях призмы и получить сечение плоскостью с заданным следом.

Наглядная стереометрия


В 13 задании ЕГЭ базового уровня мы будем иметь дело с задачами по стереометрии, но не абстрактными, а наглядными примерами. Это могут быть задачи на уровень жидкости в сосудах, которую я разобрал ниже, или же задачи на модификации фигуры – например, у которой отрезали вершины. Нужно быть готовым к решению простых задач по стереометрии – они обычно сводятся сразу к задачам на плоскости, необходимо только правильно посмотреть на чертеж.


Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Как выглядит правильная четырехугольная призма? и получил лучший ответ

Ответ от Edit Piaf[гуру]
Призма – это многогранник, две грани которой (основания призмы) – равные многоугольники с соответственно параллельными сторонами, а остальные грани — параллелограммы, плоскости которых параллельны прямой. Параллелограммы AabB, BbcC и т. д. называются боковыми гранями; рёбра Aa, Bb, Cc и т. д. называются боковыми рёбрами. Высота призмы – это любой перпендикуляр, опущенный из любой точки основания на плоскость другого основания. В зависимости от формы многоугольника, лежащего в основании, призма может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т. д. Если боковые рёбра призмы перпендикулярны к плоскости основания, то такая призма называется прямой; в противном случае – это наклонная призма. Если в основании прямой призмы лежит правильный многоугольник, то такая призма также называется правильной.
Правильной призмой называется прямая призма, основанием которой является правильный многоугольник, то есть в данном случае — квадрат.
Я нарисовала прямую призму, но она может быть и наклонной

Ответ от Happy End [гуру]
кубик

Ответ от 3 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Как выглядит правильная четырехугольная призма?

В 13 задании ЕГЭ базового уровня мы будем иметь дело с задачами по стереометрии, но не абстрактными, а наглядными примерами. Это могут быть задачи на уровень жидкости в сосудах, которую я разобрал ниже, или же задачи на модификации фигуры — например, у которой отрезали вершины. Нужно быть готовым к решению простых задач по стереометрии — они обычно сводятся сразу к задачам на плоскости, необходимо только правильно посмотреть на чертеж.

Площадь основания призмы правильной

Пожалуй, самой простой задачей при работе с призмами является проблема нахождения площади основания правильной фигуры. Поскольку оно образовано n-угольником, у которого все углы и длины сторон являются одинаковыми, то всегда можно разделить его на одинаковые треугольники, у которых известны углы и стороны. Суммарная площадь треугольников будет площадью n-угольника.

Еще один способ определить часть площади поверхности призмы (основание) заключается в использовании известной формулы. Она имеет следующий вид:

S n = n/4*a 2 *ctg(pi/n)

То есть площадь S n n-угольника однозначно определяется исходя из знания длины его стороны a. Некоторую сложность при расчете по формуле может составить вычисление котангенса, особенно когда n>4 (для n≤4 значения котангенса — это табличные данные). Для определения этой тригонометрической функции рекомендуется воспользоваться калькулятором.

При постановке геометрической задачи следует быть внимательным, поскольку может потребоваться найти площадь оснований призмы. Тогда полученное по формуле значение следует умножить на два.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *